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Abstract

Supersymmetry theory of diffusion is elaborated to study analytically a non-equilibrium binary mixture with relaxation of diffusion flux. Within
such a scheme, Bose components represent order parameter and amplitude of fluctuations of the diffusion flux, while the mutually conjugated com-
bination of Fermi-components gives the mixture concentration. For above variables, the system of equations is found to describe self-consistent
behavior of a binary mixture, when the shortest observable time interval is longer than the flux relaxation time.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Non-equilibrium binary systems under diffusion transport
were intensively investigated in past decades. Particularly, one
of the main focuses of theoretical investigation was to de-
scribe non-equilibrium systems at high frequency or high speed
of perturbations (see overviews [1,2] and references therein).
Experimentally, non-equilibrium binary systems under diffu-
sion may exist in rapidly quenched liquid mixtures, processes
with shock waves, deeply supercooled phases, and, generally,
in systems under rapid phase transformations. Using extended
thermodynamical theory [1,2], a role of relaxation and inertial
processes has been outlined in recent models [3,4]. As a basic
idea of these models, thermodynamically independent variables
were extended by the set of fast variables. The dynamics of
fast variables is consistent with the characteristic time of lo-
cal rearrangement of particles (atoms or molecules) or with
the relaxation time of diffusion flux to its local equilibrium
steady-state value. In such a case, the dynamics of processes
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can be described for large driving forces for diffusion, rapid
cooling/heating conditions, large chemical gradients, or short
periods of time.

A characteristic peculiarity of the theory of the diffusion
process in rapid phase transitions [3,4] is that time intervals are
comparable with or even shorter than characteristic scale of dif-
fusion flux variation. The latter appears together with a mixture
concentration, as fluctuating independent variable. The role of
the diffusion flux, therefore, has been analyzed in two descrip-
tions [5]. First, the shortest observable time interval is shorter
than the flux relaxation time, and diffusion flux behaves as fluc-
tuating independent variable. Second, the shortest observable
time interval is longer than the flux relaxation time, and the dif-
fusion flux behaves as a Markovian hydrodynamic noise. This
Letter is devoted to consideration of the second of these cases.
Our approach is based on the supersymmetric field-theoretical
scheme [6] which allows one to unify principle variables in such
a manner that Bose-superfield components represent field vari-
able and amplitude of fluctuations of diffusion flux, whereas the
mutually conjugated Fermi-components give the mixture con-
centration.

Along this line, we set out in Section 2 main statements
of the standard field-theoretical scheme based on the Langevin
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equation and the generating functional. Then, in Section 3 we
consider the simplest case of the homogeneous concentration
distribution. For this study we use dual fields that comprise
of the Bose-components only. We show that two representa-
tions of such type are possible: the first of these leads to equa-
tions of motion with the first order time derivative, whereas
the second one is represented by a Newtonian-type equation.
The general case of the inhomogeneous concentration distrib-
ution is studied in Section 4 by introducing of the superfield
Fermi-components, which give concentration and mean value
of the diffusion flux. (In this way, Appendix A shows that su-
persymmetry theory renders main statements of standard theory
of the diffusion process.) According to discussion in Section 5
the proposed supersymmetry approach allows one to obtain
automatically fluctuation–dissipation relations for correlators
of different components of superfield together with connec-
tion of the concentration and response of the order parameter
onto diffusion flux. Moreover, we show that rotation in super-
space gives connection of different components of superfield in
equations of motion. In a case of the homogeneous concentra-
tion distribution, reduction of the superfield into a dual field is
achieved due to fact that Grassmannian variables squared are
equal to nilpotent one. Some extension of the present model to
non-isothermal conditions is also considered. Conclusions are
outlined in Section 6.

2. Main statements

Let us consider an isothermal system which is described by
the Langevin equation for a stochastic field variable. This is

(1)ẋ(r, t) − D∇2x = −γ
∂f

∂x
+ ζ(r, t),

where dot stands for the time derivative, ∇ ≡ ∂/∂r, D is the
diffusion coefficient, γ is the kinetic coefficient, f (x) is the
specific free energy, ζ(r, t) is the stochastic force defined by
the white noise conditions:

(2)
〈
ζ(r, t)

〉 = 0,
〈
ζ(r, t)ζ(0,0)

〉 = γ T δ(r)δ(t).

In Eq. (2), angular brackets denote averaging over ζ(r, t) and
T is the noise intensity being the temperature. With introducing
measure units ts ≡ (γ T )2/D3, rs ≡ γ T /D, fs ≡ D3/γ 3T 2,
ζs ≡ D3/(γ T )2 for the time t , coordinate r, specific free en-
ergy f and stochastic force ζ , respectively, Eq. (1) takes the
simple form

(3)ẋ(r, t) = −δF
δx

+ ζ(r, t),

where short denotation of the variational derivative is used:
δF
δx

≡ δF{x(r, t)}
δx(r, t)

= ∂f

∂x
− ∇2x,

(4)F{x} ≡
∫ [

f (x) + 1

2
(∇x)2

]
dr.

Our approach is based on the generating functional meth-
od [6]

(5)Z
{
x(r, t)

} ≡
〈∏
(r,t)

δ

{
ẋ + δF

δx
− ζ

}
det

∣∣∣∣δζδx
∣∣∣∣
〉
,

which uses the Laplace representation of δ-function as the func-
tional integral over an ghost field p(r, t):

(6)δ
{
y(r, t)

} =
∫

exp

(
−

∫
py dr dt

)
Dp(r, t).

We show that the partition function can be represented in the
following standard form

Z
{
x(r, t)

} =
∫

exp
[−S{

x(r, t),p(r, t)
}]

Dp(r, t),

(7)S
{
x(r, t),p(r, t)

} ≡
∫

L
(
x(r, t),p(r, t)

)
dr dt,

where Dp(r, t) denotes the functional integration, the La-
grangian form L(x,p) depends of the stochastic relation be-
tween principle field x(r, t) and white noise ζ(r, t).

3. Homogeneous concentration distribution

Let us consider initially the simplest case, when the Jakobian
of transition from the white noise ζ(r, t) to the principle field
x(r, t) takes the trivial form

(8)det

∣∣∣∣δζδx
∣∣∣∣ = 1.

Then, using the Gaussian distribution for the white noise
ζ(r, t), we obtain the Lagrangian of the Euclidean field the-
ory [7]

(9)L(x,p) =
(

pẋ − 1

2
p2

)
+ p

δf

δx
.

The Euler equations

(10)Φ̇ = − δf

δΦ
+ j, j = δ2f

δΦ2
j,

describe the evolution of the most probable values Φ ≡ x(max),
j ≡ p(max) of the variable x and the conjugate momentum p.
The first of these equations shows explicitly that the quantity j
plays the role of the most probable value of the diffusion flux
related to the order parameter Φ , whereas the ghost field p is
reduced to the fluctuating value of this flux.

Combination of Eqs. (10) leads to the following equation

(11)Φ̈ + δ2f

δΦ2
Φ̇ = δ2f

δΦ2
j.

It should be noted that in contrast to the common result obtained
from the phase-field model [3,4], Eq. (11) explicitly contains
the diffusion flux as independent variable, whose evolution in
time is determined by the second equation of (10).

With introducing a new field

(12)F ≡ ẋ − p

the Lagrangian (9) takes the form

(13)L(x,f ) = 1

2

(
ẋ2 − F 2) − δf

δx
F + δf

δx
ẋ,
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where the last term is considered as a total time derivative.
Equations of motion are described by

(14)Φ̈ = − δ2f

δ2Φ
F, F = − δf

δΦ
.

The first equation has the Newtonian form, whereas the second
one gives the definition of the thermodynamic force related to
the order parameter. Insertion of definition (12) into the first of
Eqs. (14) leads to the equation of motion (11).

Eqs. (10) and (14) may be obtained within the elegant
supersymmetry-type scheme, whose usage will allow us to con-
sider a general case of the inhomogeneous concentration distri-
bution (see Section 4). With this aim, we introduce a dual field

(15)φp ≡ x + ϑp,

where the nilpotent variable ϑ satisfies the conditions

(16)

ϑ2 = 0, ϑϑ ′ = ϑ ′ϑ,

∫
dϑ = 0,

∫
ϑ dϑ = 1.

Then, the action appears as

(17)S
{
φ(z)

} =
∫

λ
(
φ(z)

)
dz, z ≡ {r, t, ϑ},

where the Lagrangian (9) takes the canonical form

(18)L =
∫

λdϑ, λ(φ) ≡ 1

2
φDpφ + f (φ)

with operator

(19)Dp = − ∂

∂ϑ
+

(
1 − 2ϑ

∂

∂ϑ

)
∂

∂t
.

Being projected on the axes 1 and ϑ , related Euler equation

(20)D
δλ

δ(Dφ)
+ δλ

δφ
= 0 ⇒ Dφ + δf

δφ
= 0

arrives at equations of motion (10).
On the other hand, another dual field

(21)φF ≡ x − ϑF

accompanied with operator

(22)DF = −
(

∂

∂ϑ
+ ϑ

∂2

∂t2

)
,

taken instead of definitions (15) and (19), get the equations of
motion in the form (14). Characteristically, mutually inverted
transformations of the dual fields (15) and (21) are achieved by
means of the exponential differentiation operator [7]:

φ∓F (t) = exp

(
±ϑ

∂

∂t

)
φ∓p(t),

(23)φ±p(t) = exp

(
±ϑ

∂

∂t

)
φ±F (t).

These transformations are reduced into the formal shift ϑ of the
time origin [7]:

(24)φ∓F (t) = φ∓p(t ± ϑ), φ±p(t) = φ±F (t ± ϑ).

4. Inhomogeneous concentration distribution

Formal basis of the supersymmetry scheme is known to be
the Jakobian representation [6]

(25)det

∣∣∣∣δζδx
∣∣∣∣ =

∫
exp

(
q̄

δζ

δx
q

)
d2q, d2q ≡ dq dq̄,

where q(r, t) and q̄(r, t) are the Grassmannian conjugated
fields subjected to the following conditions

q̄q + qq̄ = 0,

∫
dq = 0,

(26)
∫

q dq = 1,

∫
dq̄ = 0,

∫
q̄ dq̄ = 1.

Then, the Laplace representation (6) leads to the supersymme-
try Lagrangian

(27)L(x,p, q, q̄) =
(

pẋ − p2

2
+ δf

δx
p

)
− q̄

(
∂

∂t
+ δ2f

δx2

)
q.

Introducing the four-component superfield

(28)Ψp = x + θ̄q + q̄θ + θ̄ θp,

it is easy to show that expression (27) can be reduced to canon-
ical supersymmetry form

L=
∫

Λd2θ, d2θ ≡ dθ dθ̄ ,

(29)Λ(Ψp) ≡ 1

2
(D̄pΨp)(DpΨp) + f (Ψp).

In this equation, the Grassmannian conjugate coordinates θ and
θ̄ are defined by properties similar to Eqs. (26):

θ̄ θ + θ θ̄ = 0,

∫
dθ = 0,

(30)
∫

θ dθ = 1,

∫
dθ̄ = 0,

∫
θ̄ dθ̄ = 1.

Supersymmetry generators in Eq. (29) are given by

(31)Dp = ∂

∂θ̄
− 2θ

∂

∂t
, D̄p = ∂

∂θ
.

The extremum condition of the superaction

(32)S
{
Ψ (r, t)

} =
∫
L

(
Ψ (r, t)

)
dt

gives the supersymmetry Euler equation [7]

(33)−1

2
[D̄,D]Ψ + δf

δΨ
= 0,

where square brackets notice commutator. Taking the projec-
tions of Eq. (33) onto the axes 1, θ̄ , θ and θ̄ θ , we obtain the
equations of motion in the following explicit form

(34)Φ̇ − ∇2Φ = − ∂f

∂Φ
+ j,

(35)j + ∇2j = ∂2f

∂Φ2
j − ∂3f

∂Φ3
ψ̄ψ,

(36)ψ̇ − ∇2ψ = − ∂2f

∂Φ2
ψ,



Aut
ho

r's
   

pe
rs

on
al

   
co

py

A. Olemskoi et al. / Physics Letters A 365 (2007) 358–363 361

(37)− ˙̄ψ − ∇2ψ̄ = − ∂2f

∂Φ2
ψ̄,

which define the most probable realizations of the fields Φ ≡
x(max), j ≡ p(max), ψ ≡ q(max), ψ̄ ≡ q̄(max). With ψ = ψ̄ = 0,
the first of these equations takes the form of the Langevin equa-
tion (3). This shows that ghost field j ≡ p(max) represents the
most probable realization of the flux fluctuation amplitude ζ . It
is principally important that, in contrast to initial fields x(r, t),
p(r, t), q(r, t), and q̄(r, t) being stochastic in its nature, the
most probable fields Φ(r, t), j(r, t), ψ(r, t), and ψ̄(r, t) are de-
terministic ones.

Combining the pair of Eqs. (36) and (37), we get the conser-
vation law

(38)Ẋ + ∇ · J = 0

for the quantities

(39)X ≡ ψ̄ψ, J ≡ ∇ψ̄ · ψ − ψ̄ · ∇ψ,

which define the concentration and the diffusion flux, respec-
tively. As is shown in Appendix A, the flux (39) is reduced to
Fick’s law (66).

By analogy with the dual field (21), we can introduce the
second supersymmetry representation

(40)ΨF ≡ x + θ̄ψ + ψ̄θ − θ̄ θF.

Then, the supersymmetry Lagrangian takes the form

(41)L=
∫

Λd2θ, Λ(ΨF ) ≡ −1

2
ΨF D̄FDF ΨF + f (ΨF ),

where the supersymmetry conjugated operators read as

(42)DF = ∂

∂θ̄
− θ

∂

∂t
, D̄F = ∂

∂θ
− θ̄

∂

∂t
.

The explicit form of equations of motion

(43)Φ̈ = − δ2f

δΦ2
F − δ3f

δΦ3
ψ̄ψ, F = − δf

δΦ

is reduced to modified relations (14), being accompanied by
Eqs. (36) and (37).

Similarly to the case of dual fields, transformations of the
supersymmetry field (28) into the form of Eq. (40) are given by
[cf. Eqs. (23) and (24)]:

(44)ΨF (t) = exp

(
−θ̄θ

∂

∂t

)
Ψp(t), ΨF (t) = Ψp(t − θ̄ θ).

5. Discussion

The principle advantage of the supersymmetry method is
that it automatically derives fundamental relations between cor-
relators of different superfield components. Such relations fol-
low from the invariance condition of the superaction (32) un-
der supersymmetry transformations. In this way, the fluctua-
tion–dissipation theorem connects the structure factor S(t) ≡
〈x(t)x(0)〉 with advanced G+(t) ≡ 〈x(0)ζ(t)〉 and retarded
G−(t) ≡ 〈x(t)ζ(0)〉 Green functions in the following man-
ner [7]

(45)2Ṡ(t) = G+(t) − G−(t), t > 0.

On the other hand, supersymmetry conditions lead to the fol-
lowing connection of different projections of supercorrelators
on the superspace axes:

(46)
〈
x(t)ζ(0)

〉 = 〈
ψ̄(0)ψ(t)

〉
, t > 0.

Taking into account the first of the definitions (39) and the sim-
plest form of the fluctuation–dissipation relation 〈xζ 〉 = dΦ/dj,
one can obtain the important connection of the concentration
with response of the order parameter onto the conjugated flux.
At the time t = 0, this yields

(47)X = dΦ

dj
.

According to Eqs. (46) and (47), the binary mixture concentra-
tion X is determined by the change of the order parameter Φ

with respect to the microflux j. Being the most probable value
of the fluctuation amplitude of the variable x, the microflux j is
not reduced to the flux J, which is defined by the second equa-
tion from Eqs. (39) to describe concentration variations over
macroscopic distances, in accordance with Eq. (38).

Another advantage of the supersymmetry approach is that
this method allows one to take into account connections of dif-
ferent superfield components in equation of motion (34) in a
self-consistent manner. This is achieved as coupling supersym-
metry components due to the supersymmetry transformation

(48)Ψ̃p ≡ e−δθ̄ψΨp,

which relates to a rotation in superspace fixed with parameter
δ. With δ 
 1, equations of motion take the following form [7]

(49)Φ̇ − ∇2Φ = − ∂f

∂Φ
+ j + δψ̄ψ,

(50)j + ∇2j = ∂2f

∂Φ2
j − ∂3f

∂Φ3
ψ̄ψ − δψ̄ψ̇,

(51)ψ̇ − ∇2ψ = − ∂2f

∂Φ2
ψ + δ

[
(Φ̇ − j) + ∂2f

∂Φ2
Φ

]
ψ,

(52)˙̄ψ + ∇2ψ̄ = ∂2f

∂Φ2
ψ̄ + δΦ ˙̄ψ.

According to these equations not only the concentration X af-
fects the order parameter Φ , but the latter essentially modifies
the concentration variations as well. Thus, the combination of
Eqs. (51) and (52) gives

(53)Ẋ + ∇ · J = δ

(
− ∂f

∂Φ
+ 2

∂2f

∂Φ2
Φ

)
X

instead of the conservation law (38).
Now we show how the supersymmetry scheme is reduced

to dual fields in the case of homogeneous concentration dis-
tribution. Using superfield (28), the kinetic energy in super-
Lagrangian (29) can be reduced to the form

(54)−1

4
Ψp[D̄p,Dp]Ψp,

where the commutator

(55)−1

2
[D̄p,Dp] = − ∂2

∂θ∂θ̄
+

(
1 − 2θ

∂

∂θ

)
∂

∂t



Aut
ho

r's
   

pe
rs

on
al

   
co

py

362 A. Olemskoi et al. / Physics Letters A 365 (2007) 358–363

is reduced to dual form (19) at condition ϑ ≡ θ̄ θ (i.e., Grass-
mannian variables squared are equal nilpotent one). In the case
of superfield (40), supergenerators (42) in super-Lagrangian
(41) get the combination

(56)−D̄fDf = −
(

∂

∂θ

∂

∂θ̄
+ θ̄ θ

∂2

∂t2

)
+

(
θ̄

∂

∂θ̄
− θ

∂

∂θ

)
∂

∂t
,

which is reduced to operator (22) at the following conditions

(57)θ̄ θ ≡ ϑ, θ̄(∂/∂θ̄) = θ(∂/∂θ).

As a final note, the above consideration is related to isother-
mal conditions, when the temperature T ≡ const is a parameter
for the free energy f (T ). In non-isothermal situation, the ther-
modynamic state is defined through the specific internal energy
e fixing the specific entropy s(e). Therefore, the passage from
isothermal conditions to non-isothermal ones is achieved on the
basis of the main thermodynamic identity

(58)f = e − T s(e,Φ,X;q, j,J),

where the set of slow classic variables e, Φ , X and related fluxes
q, j, J is shown in the manner of Ref. [4]. The specific internal
energy e is determined by the conservation law

(59)ė + ∇ · q = 0,

where the heat flux q is given by the following generalized re-
lation [4]

(60)q =M∇
(

∂s

∂e
+ ε2

e∇2e

)
− τT q̇,

M being the mobility coefficient, εe is the correlation spa-
tial length, τT is the time for relaxation of the heat flux to its
steady-state value. Combination of two last equations leads to
the hyperbolic equation of motion for the specific internal en-
ergy:

(61)τT ë + ė = −∇ ·
[
M∇

(
∂s

∂e
+ ε2

e∇2e

)]
.

In the simplest case of instant relaxation of the heat flux and
vanishing spatial correlation, i.e., with τT → 0 and εe → 0, one
can obtain the following standard equation

(62)ė = −∇ ·M∇T −1,

which is a partial differential equation of a parabolic type.

6. Conclusions

A non-equilibrium binary system with diffusion has been
considered. To analyze the diffusion, a special description for
the diffusion flux has been taken into account. Namely, we
analyzed the situation in which the shortest observable time in-
terval is longer than the flux relaxation time, and the diffusion
behaves as a Markovian hydrodynamic noise [5].

We used the idea that Bose-components of superfield are
related to order parameter and amplitude of fluctuations of
diffusion flux, while combination of the mutually conjugated
Fermi-components gives the mixture concentration. A principle

advantage of such a scheme is that the supersymmetry approach
allows one to obtain automatically fluctuation–dissipation re-
lations for correlators of different components of superfield.
As a result, we obtain the fundamental connection (47) of the
concentration and response of the order parameter with re-
spect to the diffusion microflux. Thus, it was demonstrated that
main equations of non-equilibrium binary system may be re-
produced within the framework of stochastic supersymmetry
field-theoretical scheme [7].

As a perspective, several generalizations of the present su-
persymmetry model can be outlined. First, a system in which
the shortest observable time interval can be shorter than the flux
relaxation time, and the diffusion flux behaves as fluctuating in-
dependent variable can be described within the supersymmetry
model. Second, a system with both atomic diffusion and phase
separation can be analyzed. And, third, a model’s extension to
non-isothermal binary system seems to be the natural advance-
ment for the analysis.
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Appendix A

It is easily to show that the second of definitions (39) gains
the usual Fick’s law. Really, within the wave representation one
has

(63)ψ(r) =
∑

k

ψk exp(ikr), ψ̄(r) =
∑

k

ψk exp(−ikr).

Then, the gradients are

∇ψ(r) =
∑

k

(ik)ψk exp(ikr),

(64)∇ψ̄(r) =
∑

k

(−ik)ψ̄k exp(−ikr),

and the second of definitions (39) takes the form

J = −
∑
kk′

{
(ik)ψ̄kψk′ exp

[−i(k − k′)r
]

(65)+ (ik)ψ̄k′ψk exp
[
i(k − k′)r

]}
.

After renaming k into −k′ and vice versa in the second term,
the last expression can be written as the derivative

(66)J = −∇X,

where in accordance with Eqs. (39) and (63) the concentration
is represented as the wave expansion:

(67)X(r) =
∑
kk′

ψ̄kψk′ exp
[
i(k − k′)r

] ≡ ψ̄(r)ψ(r).

Thus, the supersymmetry field definitions (39) give Fick’s
law (66) (recall that we use dimensionless units where the dif-
fusion coefficient is hidden within a space scale).
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